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Abstract. This paper tests the generality and implications of an “encoding-error” model
(Fujita et al. 1993) of humans’ ability to keep track of their position in space in the absence
of visual cues (i.e., by nonvisual path integration). The model proposes that when people
undergo nonvisually guided travel, they encode the distances and turns that they experience,
and their errors reflect systematic inaccuracies in the encoding process. Thus when people try
to return to the origin of travel, they base their response on mis-encoded values of the outbound
distances and turns. The two experiments reported here addressed three issues related to the
model: (i) whether path integration is context-dependent and if so, how rapidly it adapts to
recently experienced distances and turns; (ii) whether effects of experience can be specifically
attributed to changes in the encoding process, and if so, what changes; and (iii) whether the
encoding process represents distances and turns in the individual paths without considering
their spatial relationship to one another (i.e., an object-centered representation). Testing these
issues allows us to evaluate and develop the model.

Subjects who were blindfolded or had restricted vision were led through two legs of
a triangle and the turn between, then tried to return to the origin. Paths varied in whether
experienced legs and turns were small or large (Experiment 1) and in variability of return and
outbound course (Experiment 2). Response turn, distance and course were determined. The
assumption of immutable encoding functions was not supported; encoding processes were
context dependent, although they did not adapt within a block of trials. Although effects of
experience could be accounted for by the model, the affected parameters were not always as
predicted, and in some cases additional parameters were necessary. Results of manipulating
variability in return course were consistent with the model’s assumption of object-centered
representation.
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Path integration and the return-to-origin task

An emerging view of navigation in humans and other species is that there are
two distinct means of keeping track of position and orientation during travel:
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landmark-based navigation and path integration (for a general reference, see
Gallistel 1990). In the first case, landmarks provide the traveler with direct
sensory information about current position and orientation. With path inte-
gration, the traveler uses sensed self-velocity or self-acceleration to update
current position and orientation relative to some starting point. Our concern
in this paper, as in our earlier work (Fujita et al. 1993, 1990; Klatzky et al.
1995, 1990; Loomis et al. 1993), is with human path integration based solely
on proprioceptive and vestibular cues. We have focused on these idiothetic
(internal) inputs to the exclusion of allothetic (external) inputs like optic flow,
acoustic flow, and azimuthal information because of our interest in the ability
of blind and blindfolded sighted observers to perform path integration without
external reference.

A prototypical task for studying path integration is that of traveling
from an origin along an outbound path of varying direction and then, at
some point on the path, attempting to return directly to the origin. A wide
variety of animal species have exhibited an impressive level of accuracy
at returning to the origin of travel solely on the basis of path integration.
A sizable number of studies of human path integration without sight have
also been conducted using either this return-to-origin task or alternatively,
a point-to-origin task (Beritoff 1965; Juurma and Suonio 1975; Klatzky et
al. 1990; Landau et al. 1984; Loomis et al. 1993; Rieser and Frymire 1995;
Mittelstaedt and Glasauer 1991; Sauve 1989; Sholl 1989; Worchel 1951,
1952; Yamamoto 1991). Human performance is generally poorer than that of
these other species. However, in the non-human studies, the animals actively
traversed the outbound path, optic flow information was often available
for sensing velocity, and an allothetic azimuthal reference was sometimes
present, whereas in the human studies, subjects were passively guided along
the outbound path, no visual information was available, and there was no
azimuthal reference. It should also be noted that several lower species have
been found to exhibit systematic errors even in the presence of azimuthal cues
(see Maurer and Séguinot 1995).

An organism performing this task might, at a minimum, simply maintain
a representation of current orientation and position, the latter being in the
form of Cartesian coordinates along some cardinal axes (Mittelstaedt 1985)
or in the form of polar coordinates specifying the distance and direction
to the origin (Fujita et al. 1990; Gallistel 1990; Müller and Wehner 1988).
Updating of the representation would occur moment-by-moment (e.g., step-
by-step) with only current position and orientation being stored in memory
(see Benhamou and Ségunoit 1995; Maurer and Ségunoit 1995). An alter-
native to the moment-by-moment model, which we call a configural model,
assumes that the entire outbound trajectory is stored in memory and that when
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the organism wishes to return to the origin, it uses this stored configuration
to compute the bearing to the origin. Whereas moment-by-moment models
appear to apply to many animal species, the model of human path integration
investigated here, called the encoding-error model, is a configural model.

Assumptions of the encoding-error model

A general characterization of human path integration assumes that it depends
upon a number of sub-processes (see also Loomis et al. 1993; Fujita et al.
1993). These sub-processes are (i) sensing the outbound path, (ii) forming
a representation, either of the path or of current position and orientation,
(iii) computing a return path, and (iv) executing that path. Taken together,
the first two sub-processes, which culminate with an internal representa-
tion suitable for initiating the return, are referred to as “encoding”. The
encoding-error model proposes that systematic errors in path integration
reflect systematic inaccuracies in the encoding process, and not in the
processes of computing and executing the return path. Thus errors in the turn
and distance people execute when trying to return to the origin of travel are
due to mis-representation of the outbound distances and turns.

We focus on the encoding-error model in the present paper, to the exclu-
sion of others (see, e.g., Maurer and Séguinot 1995), because of its excellent
fit to an extensive investigation of human path integration ability, reported
by Loomis et al. (1993). That investigation was part of a larger study of
spatial ability by blind and blindfolded, sighted subjects (see also Klatzky,
et al. 1995). In the primary return-to-origin task of the study, subjects were
passively guided along two legs of a triangle (Leg-A and Leg-B) with a turn in
between (Turn-1); upon reaching the end of the second leg, subjects attempted
to return unaided to the origin. The response measures were the turn made by
the subject back toward the origin (Turn-2) and the distance subsequently
walked (Leg-C). Because subjects were passively guided along the outbound
path but generated and actively controlled their attempted return to the origin,
we assume that the sub-processes were different for the two portions of the
task: (a) sensing and building a representation of the outbound portion and
(b) computing and executing the return portion.

Twenty-seven triangular pathways were completed by each subject,
representing factorial combinations of three values of Leg-A length, three of
Leg-B length (in both cases 2, 4, and 6 m), and three values of Turn-1 (60 deg,
90 deg, and 120 deg). When the mean response values were plotted as a func-
tion of the correct values, the data exhibited a very systematic pattern. Each
function was essentially linear with a slope less than 1 and a positive zero-
intercept, and it tended to cross the diagonal near the mean. As a result, the
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range of responses was considerably reduced relative to the range of correct
values, and there was over-responding at the low end of the response range
and under-responding at the high end, with the highest accuracy for responses
near the mean of correct values.

The encoding-error model was subsequently developed and fit to these
data by Fujita et al. (1993). The data tested the assumption that the systematic
error pattern observed in the data can entirely be attributed to errors made
at the encoding stages of navigation, those culminating in a representation
suitable for return to the origin. Recall that six stimulus values – 3 leg lengths
and 3 turn angles – were used to construct the pathways used by Loomis et al.
(1993). The model assumed that there was an encoded value corresponding
to each of those stimulus values. Given the encoded values for a particular
outbound path, the navigator presumably computed the return path accur-
ately and executed the response accurately (or with only nonsystematic error),
ending at some stopping point. Errors in encoding, then, produced systematic
departures of those stopping points from the actual origin of the pathway.

The encoded values for each of the six stimulus values were estimated by
minimizing the distance between the model-predicted stopping points of the
subjects and the empirically determined ones. When the estimated encoded
values were plotted against the actual stimulus values for leg length and
turn, the resulting functions proved to be highly linear. The linear encoding
functions resulted in an encoding model of only four parameters – the slope
and intercept of the function relating encoded distance to actual distance
(estimated to be 0.60 and 1.2 m, respectively), and the slope and intercept
of the function relating encoded turn to actual turn (estimated to be 0.48
and 44◦).1 These four parameters indicate that the mean of presented values
was encoded accurately, but low values were overestimated and high ones
underestimated, constituting regression to the mean in encoding. The model
provided an excellent fit to the data.

The goodness of fit means that path integration in this task is consistent
with a configural model rather than with a moment-by-moment model.
Moment-by-moment updating predicts that if speed is encoded incorrectly,
the ratio of encoded length to actual length should be a constant; that is, the
encoding function should have an intercept of 0. The fact that the encoding
functions for length had a positive intercept and slope less than 1 (signifying
that the short legs were encoded as too large and that the long legs were
encoded as too small) is thus inconsistent with moment-by-moment updating.
A similar argument can be made for the encoding of turn. Additional evidence
against moment-by-moment updating was reported by Loomis et al. (1993),
in the form of an increase in latency to initiate the return to origin, as
outbound-path complexity increased.
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We next turn to discussion of the issues addressed in the present research:
(i) whether path integration is context-dependent and if so, how rapidly it
adapts to recently experienced distances and turns; (ii) whether effects of
experience can be specifically attributed to changes in the encoding process,
and if so, what changes; and (iii) whether the encoding process represents
distances and turns in a single path without considering its spatial relation to
other paths (i.e., object-centered representation).

Relation of the encoding functions to experience with traveled paths

In its general form, the encoding-error model assumes only that all system-
atic error occurs during encoding. Based on the analysis of the Loomis
et al. (1993) data, as just described, we consider a more specific version
of the model, which assumes linear encoding functions. A third level of
specificity for the model is one that adopts not only the linearity assumption,
but also the parameters of the linear encoding functions that were estimated
by Fujita et al. (1993). There are indications that these more specific versions
of the model, at least, are limited in applicability: When extended to data
from subjects who completed pathways more complex than a triangle (from
Klatzky et al. 1990), fits of the linear model were considerably worse, and
the parameter estimates differed from those derived from the Loomis et al.
data. This may reflect the contribution of higher-order processes based on
the configural properties of the stimuli, as are found in memory for maps
(MacEachren 1992; Tversky 1981).

Even when constrained to the domain of relatively simple stimuli, the
encoding-error model raises a number of issues. One concerns whether and
how the encoding functions vary with experience. At the outset, we consider
two mutually exclusive hypotheses about the influence of prior experience,
in the context of the encoding-error model: (1) The encoding function is
immutable, being independent of the past experience of a navigator, and (2)
the encoding function depends upon the history of navigated pathways. If
the function is immutable, then the parameter values fit to the Loomis et al.
(1993) data by Fujita et al. (1993) are presumably the operative ones, and they
should be found regardless of the nature of other pathways in the immediate
context.

The assumption of immutable encoding seems, a priori, to be doubtful.
Encoding of pathways on the scale of tens of meters is unlikely to use the
same mapping as is used for pathways on the scale of under 10 m. In contrast
to the immutability assumption, Maurer (1998) has recently proposed a model
in which path integration is based on an estimate of distance that is assim-
ilated to the average or maximal value in the animal’s home range. Work
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with humans indicating adaptation to many stimulus properties (Helson 1948)
indicates that assimilation to navigational experience should occur, but the
scope over which it occurs for human path integration is still an open ques-
tion. Assuming that the encoding function varies with experience, one can ask
whether the dependence takes into account only the most recent pathways, or
is temporally more extended.

In order to manipulate experience, Experiment 1 varied the region of
values of leg lengths and turns that a navigator experienced while traversing
outbound legs of a number of paths. To see how this might affect the encoding
process, consider that the leg-length encoding function estimated by Fujita et
al. turned out to be highly accurate at the mean (equivalently, midpoint) of the
stimulus values used in the Loomis et al. experiment, i.e., 4 m. If one assumes
an encoding function that is constant regardless of context (which we doubt),
then legs of 4 m would be encoded accurately regardless of the experienced
leg lengths. If, in contrast, accuracy at the 4-m value reflects regression to
the mean of values to which the navigator was exposed, then the encoding
function should differ for sets of paths having a different mean from that
of Fujita et al. Further, if adaptation to the local encoding context is rapid,
then the encoding function should vary when the same navigator shifts from
one region of leg lengths or turns to another within a short period of time.
In Experiment 1, subjects experienced different regions of variation in leg
length and turn over the course of a single session. The study asked not only
whether the encoding function of Fujita et al. would be used, but whether
these within-session variations would lead to differences in the underlying
encoding functions and hence in the pattern of responses.

Another way in which the region of stimulus parameters could affect the
estimated encoding function occurs if that function is globally nonlinear.
Fujita et al. (1993) noted that although linear encoding functions were derived
for the Loomis et al. (1993) data, the encoding function for turn was unlikely
to be strictly linear over its entire range. Presumably, turns of zero and 180◦
would be encoded relatively accurately (Klatzky et al. 1990; Sadalla and
Montello 1989). A finding of linear functions that differed in slope at differing
regions might reflect a single underlying encoding function, but one that only
locally approximated linearity.

Experiment 1 included a further manipulation that is likely to affect the
encoding function; subjects navigated the path with no vision or partial
vision. If the encoding function is not immutable, and if partial vision
produces better discrimination among the distances and angles in the
outbound paths, the encoding function should be steeper than in the no-vision
condition.
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Object-centered representation vs. relative spatial disposition

The encoding-error model implicitly assumes that the operative representa-
tion in path completion is what Marr (1982) called object-centered, where
each path constitutes an object. The assumption is inherent in the model,
because navigators are assumed to respond on the basis of encoded leg lengths
and turns in a single path. The disposition of the paths relative to one another,
or to a common external reference frame, is irrelevant under this model.
It is reasonable to question whether navigators who complete a triangle on
foot, without vision, have enough information about the local environment to
anchor the path in an objective reference frame, as defined, for example, by
the room or cardinal directions (cf. Rieser and Frymire 1995). Even without
access to such referents, however, it is possible that subjects anchor the paths
in a common space that is subjectively defined. For example, they might
represent all the paths as having a common origin and direction of the first
leg. This would allow them to relate the paths to one another, even if they did
not know where they lay relative to an objective spatial frame. In this case, the
subject would not be using an object-centered representation, and the spatial
layout of the set of paths might affect performance.

Experiment 2 addressed whether subjects represent the disposition of the
paths relative to one another by using a common reference direction, and
more specifically, whether they compute the response in terms of that refer-
ence direction, or the return course. The course is the direction of a linear
segment in space, relative to a reference direction (e.g., North). Course differs
from turn in that a common reference direction is used for course values
across all paths, whereas the response turn is the angle between the second
outbound leg for a given path and the return leg. In the previous study of
Loomis et al. (1993), subjects made only rightward turns on the outbound
path. As a result, there was little variability in the course of the return leg: If
the direction along the first leg is called North, the return course was predom-
inantly to the Southwest. In the present study, we manipulated variability of
return course across paths, while at the same time holding the distribution of
response turns constant. The manipulation was intended to affect subjects’
ability to determine the course response.

Classical paradigms in which subjects must discriminate between similar
responses over trials produce substantial interference effects (see, e.g.,
Crowder 1976, Chapters 7–8). We hypothesized accordingly that low vari-
ability in return course would produce memory-based interference, essen-
tially resulting in noise or uncertainty about the correct value of return
course. Fujita et al. (1993) further proposed that the reduction in the range
of responses observed by Loomis et al. (1993) was a result of such uncer-
tainty; that is, lacking precise information about the correct response, subjects
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moved all responses toward the mean. This reasoning was supported by
Hayashi, Fujii, and Innui (1990), who found that the exponent of the power
function for distance estimation decreased with memory load – essentially a
reduction-of-range effect. Klatzky (1999) found that in the task of completing
a triangle haptically, on a table top, the range of angular responses was
severely reduced when subjects had to mentally rotate each path before
responding. In summary, in Experiment 2, low variability in correct return
course was proposed to cause interference and a consequent reduction in the
range of the course responses relative to the correct course values, increasing
error. This should occur, however, only if subjects represented the similarity
in return courses, which requires relating the various pathways to a common
reference direction. If, in contrast, subjects adopted an object-centered repre-
sentation, as proposed by the encoding-error model, there is no reason for
them to process the distribution of return courses and hence no reason to be
subject to effects of its variability.

Experiment 2 also allowed encoding functions to be fit to the data from
subjects having different experience with outbound paths. More specifically,
it asked whether greater variation in a feature of the outbound-path – turn or
leg length – would result in finer discriminations among values, producing a
steeper encoding function for that feature.

Data analyses

The responses in the present studies are the turn and distance people walked
when attempting to return to the origin of travel for a given path. The
approach to data analysis is twofold: The first type of analysis works with
the raw data. Where a variable is expected to influence overall error, analyses
can be conducted on data pooled over the stimlus paths. We are generally
more concerned, however, with functions relating the subjects’ responses to
the correct values for the individual paths (response vs. correctfunctions).
For each condition of interest, there are distinct functions for response turn
and response distance; in Experiment 2 a response course function is also
considered. The response vs. correct functions are generally highly linear,
so that each can be described by a slope and intercept parameter. Signed
error is indicated in these functions by whether the response value is above or
below the diagonal, which represents correct performance. The second type
of analysis fits the encoding-error model to the average data, to extract a func-
tion describing subjects’ encoding of turn and distance values in the outbound
paths. Following Fujita et al. (1993), we assume a priori that this function is
linear. Thus, fitting the model generates one linear function relating encoded
turn to actual outbound turn and a second linear function relating encoded
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distance to actual outbound distance; each of these functions has a slope and
intercept parameter.

Experiment 1

Subjects completed a triangle after having been led through Leg-A, Turn-1,
and Leg-B; in completing it they executed Turn-2 and Leg-C. The critical
variables were (i) the “path feature” that was manipulated (Leg-A or Turn-1),
and (ii) the “region” of possible values from which that feature was drawn
(small or large values). These variables were combined in a series of distinct
blocks of trials. When Leg-A was the manipulated path feature, subjects were
exposed to a series of paths where the Leg-A lengths were all within either a
region of small values (1–3 m) or a region of large values (4–6 m). In these
conditions, Turn-1 varied relatively little. When Turn-1was the manipulated
path feature, subjects were exposed to a set of Turn-1 angles that were all
within either a region of small values (10◦–70◦) or a region of large values
(110◦–170◦), and in these conditions, leg lengths varied relatively little.

In analyzing the empirical data and fitting the model, we considered the
two general hypotheses described above. First, there might be no effect of
experience with recent paths on the encoding of new parameter values. In this
case, the encoding function found previously by Fujita et al. (1993) should
apply to the current data, regardless of the region of the manipulated para-
meter. Second, and more likely, the encoding function might be adapted to
expectations or context. In this latter case, adaptation could be rapid enough
to occur within each block of this experiment, or it could be more extended
in time.

If the Fujita encoding functions are applied to the paths in Experiment
1, they predict a function relating responses to correct values that shows a
general pattern of over-responding when response values are relatively low,
and under-responding when they are high. This predicted function is shown
in Figure 1 for each of the manipulated path features and measured responses.
The functions tend to cross the diagonal at a point slightly rightward of the
mean of response values, reflecting differences in the distribution of response
values in this experiment as compared to that of Loomis et al. (1993).

If navigators rapidly adapted to variations in the present path features,
they might form distinct encoding functions for each block of trials, each
regressing to the mean of the region used in that block. In that case, the
path having the mean values of Leg-A, Leg-B and Turn-1 (the “average
path”) within each region would be encoded correctly, and Leg-C and Turn-
2 responses to that path would take on the correct values. Because of the
experimental design, the function relating responses to correct values should
then cross the diagonal near the mean of correct values. This would occur



40

Figure 1. Predicted value of Leg-C and Turn-2 responses for the paths in Experiment 1,
using the parameters of encoding functions derived by Fujita et al. (1993). The best-fit linear
function is applied globally to the entire parameter range.

within each region, and for each response. As a result, the manipulation of
region should produce two distinct functions relating responses to correct
values, with the means of response values tending to match the means for the
low and high region of correct stimulus values separately. Predicted responses
generated from the Fujita et al. encoding functions, but applied to each region
separately, are shown in Figure 2. For these purposes, the slopes of the
Fujita encoding functions were imposed, but the intercepts were adjusted to
produce regression to the mean values of the present path features, so that the
within-region mean of a given path feature would be encoded accurately. The
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Figure 2. Predicted value of Leg-C and Turn-2 responses for the paths in Experiment 1,
generated by applying the model of Fujita et al. (1993) locally to each parameter region. The
slopes of the encoding functions derived by Fujita et al. were combined with intercepts that
would force accurate encoding of the mean of the values within each region. Best-fitting linear
functions are shown for each region.

adjusted encoding functions were then used to generate the predicted turn and
distance response shown in the figure.

A third alternative is slow adaptation to experience. Consider that subjects
bring generalized expectancies such as anticipated room size to the task. They
may also adapt slowly across the entire session rather than being block by
block. In this case, discrete functions relating responses to correct values
within each region would not be seen (cf. Figure 2). If subjects happened to
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arrive at an encoding function that regressed to the overall mean of stimulus
values, as in the case of Loomis et al. (1993), then there would be a single
empirical function relating responses to correct values that crossed the diag-
onal near the mean of correct values, pooled across regions. However, just
because the function fails to show distinct regions does not mean that it must
cross the diagonal at the overall mean of correct values. Indeed, because trials
were blocked by regions of feature values, subjects would not be exposed to
the entire distribution of values until relatively late in the study, which would
work against assimilation to the mean experimental value of leg length or
turn.

An additional manipulation was whether subjects had occluded vision
(with diffuse light only) or whether they could see 1.5 m ahead along the
path, allowing optic flow from the floor and sight of the turn angle as the
two outbound legs intersected. This manipulation was intended to provide
a broader test of the encoding-error model. If regression to the mean in
encoding stimulus values reflects poor sensory information, and if vision
improves encoding, then the function relating response values to correct
values, as well as the estimated encoding functions, should have a slope closer
to 1.0 and an intercept closer to 0.0 in the condition with partial vision.

Method
Subjects.The subjects were 7 male and 7 female university students paid to
participate; genders were split across groups as equally as possible.

Stimuli.The subject’s task on each trial was to complete a triangle after having
been led on a leg of varying length (Leg-A), through a rightward turn of
varying size (Turn-1), and then along a second leg that was always 2 m in
length (Leg-B). The subject then made a second turn (Turn-2) and walked a
third leg (Leg-C), in order to respond. Each subject took part in trials with
36 distinct triangular paths, with each path replicated twice, for a total of
72 trials. The paths were divided into four sets, defined by the manipulated
path feature (Leg-A length or Turn-1 angle), and the region of values of that
feature (small or large). In the small-leg set, Leg-A was 1, 2, or 3 m, and
in the large-leg set it was 4, 5, or 6 m; each of these values of Leg-A was
combined with 3 Turn-1 values – 60◦, 90◦, or 120◦ – to create 9 triangles per
set. In the small-turn set, Turn-1 was 10◦, 40◦ or 70◦; in the large-turn set it
was 110◦, 140◦, or 170◦; each of these values of Turn-1 was combined with
Leg-A values of 2, 3, and 4 m, to create 9 triangles per set. Presentation of
the sets was blocked, as described below.

Apparatus.The experiment was conducted within an experimental space 7.9
m × 8.0 m. The first leg of each path was marked in tape; the second leg
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was a 1.74-m metal strip that was put into place at the correct angle at the
start of each trial, so that in stepping just beyond it, the subject completed
the 2-m length desired for the second leg. The subject was guided on the first
two legs of the triangle by holding onto a bar held by the experimenter, then
attempted to return to the origin. A Sonin 250 transmitter and two receivers
were used to determine the endpoint of travel by trilateration. No feedback
was given. The subject was led circuitously to the origin between trials;
subjects generally report that they are unable to track the origin’s location
under these conditions.

In the vision condition, the subject could see only 1.5 m in front. A
bicycle helmet was altered by adding an opaque visor that limited side
vision (Sadalla and Montello 1989), and the visor tilt was adjusted for each
viewer to limit sagittal head movement and enforce the viewing distance. To
implement the no-vision condition, subjects wore not only the helmet but
also eye covers that allowed light but not pattern vision. An omnidirectional
microphone and earphones were also used, so that sound was sent to the ears
from a fixed location in the room, regardless of point of origin (see Loomis
et al. 1993; Rieser et al. 1986).

Design and procedure.The presence/absence of vision was manipulated
between subjects; the path feature and region manipulations occurred within
subjects in four distinct blocks of trials. In each block a set of 9 paths, corre-
sponding to a single manipulated path feature and region, was presented,
with each path in the set repeated twice. A Latin Square was used to order
the blocks across subjects. The two replications of a set of paths within a
block occurred in succession (i.e., all 9 paths were presented before any was
repeated); the path order was otherwise random. At the end of the block, there
was a break while the experimenters prepared the next paths and the helmet
was recalibrated for subjects in the vision condition. Subjects were outside the
room when the helmet and earphones were installed and during recalibration.

Results
The stopping location was used to compute two response measures, a turn
angle toward the origin at the end of Leg-B (i.e., Turn-2) and a walked
distance (i.e., Leg-C). The computation assumed that subjects turned in the
direction that yielded a turn angle of less than 180◦ and did not veer. Due to
experimenter error, 4 trials had missing scores, and the value from the other
replication trial was substituted for the missing value.

Replication effects.Data were initially examined for replication effects,
which compared (within each condition) the two replications with respect
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to the slopes and intercepts of functions relating responses to correct values
(the response vs. correct functions). As these 32 tests had only 2 significant
outcomes (one is expected by chance), the two replications were combined
for further analysis. Note that this does not simply reflect low statistical
power; the data were very similar across replications.

Average signed error.Table 1 reports the mean of correct and response
values across paths, subjects, and replication for each condition (defined
by manipulated path feature, region, and visual status) and each response
measure (Turn-2 and Leg-C). To determine effects of region and visual status,
separate analyses of variance were conducted within each manipulated path
feature and response measure. Vision reduced error; the effect was at least
marginally significant in three out of the four cases tested: the Leg-C
measure when Leg-A was manipulated, F(1,12) = 11.06, p< 0.01; the
Turn-2 measure when Leg-A was manipulated, F(1,12) = 5.18, p< 0.04,
and the Leg-C measure when Turn-1 was manipulated, F(1,12) = 3.90, p
= 0.072. The effect of region was also significant in all four ANOVAs: the
Leg-C measure when Turn-1 was manipulated, F(1,12) = 9.00, p< 0.025,
the Turn-2 measure when Turn-1 was manipulated, F(1,12) = 11.80, p<

0.01, the Leg-C measure when Leg-A was manipulated, F(1,12) = 33.42,
p< 0.001, and the Turn-2 measure when Leg-A was manipulated, F(1,12) =
4 72, p = 0.05. These region effects simply reflect the overall tilting of the
data away from the diagonal. Although the tilt appears to be more symmetric
about the mean when vision is present, in no case did visual status interact
with region.

Response vs. correct functions.Figure 3 shows the average response vs.
correct functions for each response measure (Leg-C and Turn-2), within each
of the four conditions defined by visual status and manipulated path feature.
Subjects tended to over-respond when correct values were relatively small
and under-respond when correct values were relatively large, as was found by
Loomis et al. (1993). Linear functions provided a good fit to each response
and condition, as shown in the figure.

Although the combined-region functions shown in Figure 3 fit the data
well, it is also possible to fit two functions to each condition, one for
each level of region from which stimulus values were drawn (large vs
small). We used t-tests to compare parameters (slope, intercept) of separate
functions defined by region. This amounts to fitting separate functions to
the data represented by squares and circles in Figure 3 and comparing
the regression parameters. Of the 8 comparisons, there were significant
parametric differences in 5 cases. These cases all indicated a flattening
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Table 1. Experiment 1: Mean of correct values for each response – Leg-C (m) and Turn-2 (deg) – and mean of responses, by visual
status, manipulated path feature(Turn-1; Leg-A) and region of that feature (small values, large values, and pooled over region)

Small values Large values Pooled over region

Mean of Mean Mean Mean of Mean Mean Mean of Mean Mean

Manip. parameter correct response, response, correct response, response, correct response, response

and response values vision no-vision values vision no-vision values vision no-vision

Turn-1

Leg-C 4.62 4.28 3.89 2.08 2.31 2.06 3.33 3.30 2.98

Turn-2 156.12 152.17 161.06 81.73 86.94 104.83 118.92 119.56 132.94

Leg-A

Leg-C 2.84 3.01 2.68 5.34 4.76 4.06 4.09 3.88 3.37

Turn-2 137.47 131.33 149.56 110.93 110.89 125.06 124.20 121.11 137.31
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Figure 3. Experiment 1: Correspondence between response value and correct value for each
manipulated path feature (Turn-1, Leg-A), each response measure (Turn-2, Leg-C), level of
visual status (vision, no-vision) and region of path feature (small, large). Linear functions are
fit separately by visual status but not by region.

of the response-vs-correct function at its upper end, resulting in a higher
intercept and lower slope for the function fit to the responses closer to
that end. In essence, these comparisons capture a subtle but fairly regular
nonlinearity of a typical psychometric form. As this nonlinearity accounts
for little variance (on average, 6%), and it does not follow the predictions
based on regression of encoding parameters to the mean of experienced
values within a region (see Figure 2), it will not be discussed further. Note
too that simulations showed that the same nonlinearity can be generated by a
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Table 2. Experiment 1: Parameter values from encoding-error model fit separately by
manipulated path feature (Turn-1, Leg-A) and visual status

Length Length Angle Angle
slope intercept (m) slope intercept (deg)

Turn-1 manipulated, vision 0.66 0.77 0.84 14.61

Turn-1 manipulated, no-vision 0.60 0.55 0.86 0.08

Leg-A manipulated, vision 0.73 0.72 0.72 30.09

Leg-A manipulated, no-vision 0.52 0.66 0.82 0.81

single encoding function applied across regions; it does not by itself indicate
separate encoding functions at the two levels of region.

Fitting the encoding-error model.The encoding-error model was fit to the
data by assuming that subjects (a) encoded the lengths of Legs A and B
by a linear function that mapped stimulus values to internalized values, (b)
also encoded the angle of Turn-1 by a linear function, (c) computed the
return trajectory from the encoded values without systematic error, and (d)
executed the return trajectory without systematic error. The model was fit
separately for each combination of manipulated path feature (Turn-1, Leg-A)
and visual status. Initially, versions were evaluated that fit the data over both
regions of the path feature simultaneously and to each region separately (the
latter doubled the number of parameters). Because there was no advantage
in goodness-of-fit for the two-region model, we will focus on the model that
assumes common encoding functions across both regions of the manipulated
path feature. This model has 4 parameters: the slope and intercept of the
encoding function for leg length, and the slope and intercept of the encoding
function for turn. Best-fitting parameters were found by using a routine that
minimized the Euclidean distance between the subject’s empirically deter-
mined response endpoint and the model-predicted endpoint, summed over all
paths in the condition under consideration. Table 2 shows the parameters of
the encoding function for each of the four conditions. As was the case in
Fujita et al. (1993), the functions showed slopes considerably less than 1.0.
However, substantial positive intercepts were not always evident.

To evaluate the model, we considered 8 sets of model-predicted data,
corresponding to 4 conditions (defined by manipulated path feature and
visual status) and 2 measured responses (Leg-C and Turn-2). The correla-
tions between predicted and observed responses averaged 0.97, and the slopes
relating predictions to observations also averaged 0.97, across the predictions.
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As was explained in Fujita et al. (1993), however, it is relatively undemanding
for a model to make ordinally correct predictions that will be positively
correlated with the observedresponses. A more demanding criterion for
goodness of fit is to predictsigned errorsin the responses. Considering this
test, the model produced correlations between predicted and observed signed
error averaging 0.86, and the slope of the function relating predicted error to
actual error averaged 0.84. These predictions of signed error are somewhat
worse than those obtained previously for the Loomis et al. (1993) data by
Fujita et al., where the correlation between predicted and obtained signed
error averaged 0.92 and the slope averaged 1.08. However, the Loomis data
were based on a larger N.

The data generated by the model showed the obtained effect of visual
status; that is, the mean of predicted Leg-C was greater for the vision
condition and the mean of predicted Turn-2 was greater without vision, as
was observed. The model did not, however, predict the small nonlinearities
that led to the effects of region in the data (nor did models that were fit
separately by region).

Comparison to Fujita et al. model.Comparison of the parameters of the
present no-vision functions with those estimated by Fujita et al. (1993) for
other no-vision data (from Loomis et al. 1993) indicates that the values are
quite different. Averaging over the two manipulated path features (Leg-A
and Turn-1), the slope for the leg-length encoding function was 0.56 and
the intercept was 0.60 m (cf. 0.60 and 1.2 m for Fujita et al.). The slope
and intercept of the presently derived turn-encoding function averaged 0.84
and 0.4◦ (cf. 0.48 and 44◦ in Fujita et al.). The differences in the func-
tions estimated by Fujita and for the present data contraindicate the use of
a highly general encoding function. We further evaluated the generality of
the encoding functions by using the Fujita parameters to predict the present
data. The correlations between responses predicted by the Fujita parameters
and observed responses for Leg-C and Turn-2 were all high (0.94 or better);
however, there were systematic errors in the predictions. This can be seen
in Figure 4 (upper panels), which shows the relation between the observed
responses and the Fujita predictions (generated as for Figure 1), for two of
the four combinations of path feature and response (the others showed similar
goodness of fit). Shown for comparison (lower panels) are the observed
responses against the present model’s predictions for the same conditions
(again, the others were similar in goodness of fit). On balance, we conclude
that the Fujita et al. functions were not used to encode the present stimuli.

In further departure from the Fujita et al. model, the presently obtained
encoding functions did not produce a general pattern of regression to the
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Figure 4. Upper panels: Relation of observed responses, with and without vision, to predic-
tions for Experiment 1 from the Fujita et al. (1993) parameters, for two of the four
combinations of manipulated parameter (Turn-1, Leg-A) and response (Leg-C, Turn-2). Lower
panels: Relation of observed responses to predictions from the model fit to the data, for the
same conditions.

mean of encoded values, which would lead to encoding the mean stimulus
value correctly. Values that would be encoded without error, given the mean
parameters estimated in the no-vision conditions, would be a leg length of
2.8 m and a turn of 123◦, as compared to the mean stimulus values of 2.6 m
and 90◦. It should be noted too that the no-vision data did not show greatest
response accuracy near the mean of correct values.
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Discussion
Overall, the data indicate that encoding is experience dependent, but not
on a block by block basis. Consider first the results when vision was fully
occluded. The data showed a similar pattern to Loomis et al. (1993), in that
subjects compressed the range of responses, and as a result, linear functions
fit to the data relating responses to correct values had slopes less than 1.0.
The results did not, however, show matching of the mean of responses to the
mean of correct values, instead showing an overall pattern of overturning and
underwalking. The failure of subjects to assimilate encoding to the overall
mean may reflect the blocking of feature values, which meant that the full
range would be known only relatively late in the experiment.

These data did not show that responses were assimilated to experi-
enced values separately at each region of the manipulated stimulus features.
Substantial variance was accounted for by a single function fit across regions
of the manipulated feature; there were not two obviously discrete response
vs. correct functions that crossed at regional means. Moreover, there was
no evidence of a change in performance between the two replications of a
particular region of stimulus values, as might be expected if subjects used the
first replication to learn about the values and adjust the encoding function.

Partial vision reduced error, so that responses were closer to the diagonal
of the response vs. correct function. The mean Leg-C response was within 0.2
m of the mean of correct values, and the mean Turn-2 response was within 3◦
of the mean of correct values. The degree to which the range of responses
was compressed, relative to correct values, did not decrease when partial
vision was supplied, although overall accuracy increased. This is not what
was expected. That is, whereas one might have expected vision to increase
sensitivity to variations in the stimulus, and thereby to increase the slope
of the function relating responses to correct values, the increase in accuracy
due to vision was reflected in the intercept of the function. Moreover, the
parameters of the encoding functions fit to the data did not show a systematic
increase in slope with vision.

An encoding-error model that fits linear encoding functions to the data
accounted for a substantial amount of variability in signed error and produced
the observed effects of visual status. The parameters of the model were quite
different from those found by Fujita et al. (1993) for the Loomis et al. (1993)
data. Moreover, when the Fujita parameters were used to predict the present
data, the model-predicted responses showed systematic deviations from the
observed responses. Thus it appears that the Fujita et al. parameters are not
broadly generalizable. Another indication of this can be seen in Table 2,
which shows that the parameters fit to the data differed even between the
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two sets of paths used in the present experiment, one set manipulating Turn-1
and the other manipulating Leg-A.

Experiment 2

The task in Experiment 2 was again triangle completion. Its primary purpose
was to investigate whether variability in return course affects performance in
triangle completion. Recall that the return course is the angle between the
return leg and a reference direction, which we arbitrarily aligned with the
direction of outbound travel along Leg-A. Two groups of subjects took part,
one having high variability in return course and another low variability. While
the course varied, the response turn values were identical for the two groups.

As was explained in the introduction, the encoding-error model’s assump-
tion of object-centered representation would not predict an effect of vari-
ability in return course, because the variability can only be known if the
spatial disposition of the different paths is represented relative to a common
reference direction. In that case, low variability in return course is hypothe-
sized to produce memory-based interference, leading to a reduction in the
range of the course responses relative to the correct course values and hence
increasing error.

The second purpose of the study was, as in Experiment 1, to determine
whether different encoding functions would result from different experience
with oubound path features. A specific hypothesis is that greater variability in
a parameter of the outbound path sensitizes navigators to that parameter, so
that they differentiate the parameter values to a greater extent. This would
result in a steeper encoding function for more variable parameters. The
outbound path features are shown in Table 3 and will be discussed in more
detail in the Method section.

Method
Subjects.Subjects were 16 individuals (8 males, 8 females) from the
university community who were paid for a single 2-hour session. They were
assigned to two groups with 4 males and 4 females in each.

Stimuli. Subjects were blindfolded and exposed to 32 trials, comprising 3
replications of 8 different experimental paths and an additional set of 8 filler
paths. The experimental configurations are those shown in Figure 5, and their
parameters are shown in Table 3. Unlike Experiment 1, Turn-1 could be either
rightward or leftward. The triangular configurations that were experienced by
the two groups were actually identical. What differed was the direction in
which the legs were traversed, and hence which legs and turn were outbound
and which were produced as the response. Note that the magnitude of the
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Table 3. Experimental path features in Experiment 2. Leg A was constant at 4 m

Path # Drop-off point Leg-B Turn-1 Leg-C Turn-2 Return course

re ref. direction (m) (deg)a (m) (deg)a (deg)

Variable return

1 15 6.20 −175 2.25 −170 195

2 60 5.48 −159 2.25 −141 240

3 105 4.05 −148 2.25 −107 285

4 150 2.34 −151 2.25 −59 330

5 195 1.92 162 2.25 33 15

6 240 3.47 146 2.25 94 60

7 285 5.07 155 2.25 130 105

8 330 6.05 169 2.25 161 150

Variable outbound

1 15 2.25 15 6.20 170 185

2 60 2.25 60 5.48 141 200

3 105 2.25 105 4.05 107 212

4 150 2.25 150 2.34 59 209

5 195 2.25 −165 1.92 −33 162

6 240 2.25 −120 3.47 −94 146

7 285 2.25 −75 5.07 −130 155

8 330 2.25 −30 6.05 −161 169

a Clockwise turn values are signed positively, counterclockwise negatively.

response turn (Turn-2) required of subjects was identical for the two groups,
but was to be made in opposite directions.

The critical experimental manipulations were performed by using a
circular arrangement for the various paths (see Figure 5). The drop-off points
(the ends of Leg-B, from which the subject responded) were distributed
around the circumference of a circle 4.5 m in diameter. The radii from the
center of the circle to the drop-off points were walked by both groups, but
at different points in travel, as follows. The variable-return group began each
trial in the center of the circle, walked outside of it along a Leg-A of 4 m,
turned, and moved along a Leg B to a drop-off point on the circumference
of the circle, from which they were to return to the center along a radius. For
these subjects, then, the radii of the circle constituted the Leg-C segments, and
the broad angular distribution of these radii over the set of paths meant that
this group had a variable return course. Conversely, the variable-outbound
group originated each trial outside the circle, walked along a 4-m Leg-A into
the center, and then turned and continued along a radius of the circle to a drop-
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Figure 5. Row 1: Typical paths in Experiment 2 for each group, with X marking the origin and
arrows indicating direction of travel along Legs A, B, and C. Row 2 and 3: The eight experi-
mental paths relative to the circle on which dropoff points lay. Also shown is the centroid of
responses for each path and condition (variable-return shown by dark oval, variable-outbound
by dark square).

off point on the circumference. This group was called variable outbound,
because it was the Leg-B segments that fell along the broadly distributed
radii of the circle.

As a result of the path layouts, the two groups experienced differences
in the variability not only with respect to course, but also in outbound path
features. The group with variable outbound course also experienced (a) vari-
able outbound turn (which was made in the center of the circle to face a point
on the circumference) and (b) invariant outbound leg lengths on the experi-
mental paths (Leg-A was constant at 4 m and Leg-B fell along a 4.5-m radius
of the circle). Thus the group with variable return course experienced less
variability in outbound turn and more in outbound leg-length (see Table 3).
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Each experimental configuration was presented 3 times for each group.
In addition, there were 8 filler paths presented once each, in which Leg-A
length was either 3 m or 5 m instead of the 4-m length in the experimental
trials. The order of path presentation was randomized, within the constraint
that all 8 experimental paths were tested before any one was repeated.

Apparatus and procedure.The experiment was conducted in the same labora-
tory as Experiment 1. To minimize potential auditory distance cues, direct
sound was attenuated by approximately 20 dB with hearing protectors, under
which were small earphones. As in Experiment 1, the microphone signal was
amplified and delivered to both ears, precluding localization but allowing
verbal instructions to be audible.

The experimenter guided the blindfolded subject along the paths by
maneuvering a horizontal bar that the subject grasped with both hands;
the subject then attempted to walk freely back to the starting location.
The observer’s horizontal position in the workspace was sensed by a video
tracking system described elsewhere (Klatzky et al. 1990), which sampled the
observer’s position at 30 Hz to an absolute accuracy of about 5 cm. Between
trials the experimenter guided the subject back to the starting location via a
circuitous path to avoid error feedback. On about 4% of the trials, a subject’s
response course erred enough to result in a possible collision with one of
the laboratory’s walls, in which case the trial was aborted and the data were
eliminated.

Results
Only data from the 24 experimental trials (not the 8 fillers) were considered.
From the position record of the walked homeward trajectory, measures of
Turn-2 and Leg-C were derived. The response course was based not on the
recorded trajectory (which could include veer), but on the angle between
the dropoff point and the subject’s stopping point for a given path (averaged
over replications). The centroid of responses averaged over subjects, for each
of the paths and groups, can be seen in Figure 5. Also shown is the correct
response location. Figure 6 shows the mean response centroid and standard
error.

Response vs. correct functions.Response measures include signed error in
distance (Leg-C), turn (Turn-2), and course. Course was computed clock-
wise relative to the direction in which Leg A was traversed. Signed course
error is the difference between the correct course and response course, signed
according to the shorter direction from correct to response course. A positive
sign means that the subject started along a course that was clockwise of the
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Figure 6. Experiment 2: Centroid of responses and standard error of the mean distance from
centroid for the variable-return condition (upper cluster of points) and the variable-outbound
condition (lower cluster). The circle is centered on the centroid of responses, the number in
the center identifies the path (see Table 3), and the radius is the standard error. The correct
endpoint is at the top of Leg A (vertical line in each path) for the variable-return condition and
the bottom for the variable-outbound condition.

correct course (i.e., the response course would be reached sooner by going
in a clockwise direction from the correct course than by going in a counter-
clockwise direction). A negative sign means that the shorter direction from
correct to response course is counterclockwise. Signed turn (Turn-2) error
was computed as response turn minus correct turn, so that overshoots are
signed positively and undershoots negatively. It was assumed that subjects
always made the lesser of the two possible turns toward the origin, and no
obvious violation of this was noted by the experimenter. Signed distance
(Leg-C) error was also computed as response minus correct, with positive
values indicating overshoots and negatives indicating undershoots.

Figure 7 shows the mean response course as a function of the correct
course. A function fit to the overall data had a slope of 1.12 and a y-intercept
of −14.35◦, with an r2 of 0.96. The lesser variability of return course in the
variable-outbound condition did not produce a flatter region in the function,
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Figure 7. Experiment 2: Functions relating response course to correct course, by group
(variable-return, variable-outbound).

corresponding to a reduction in the range of the course responses relative to
the correct course values. Such a difference in slope between groups should
produce a difference in absolute error even if both functions were centered
on the diagonal (in which case mean signed error would not differ), but
neither signed nor absolute error differed between groups, p> 0.25 for both
measures.

Figure 8 (upper right panel) shows the response vs. correct function for
Turn-2. Although the correct turn angles were identical for the two groups,
the pattern of errors differed. Note in particular a stairstep pattern in the
function relating the response turn to the correct turn within the variable-
outbound condition. Because successive points on the x axis correspond to
response turns of different direction (alternating first counterclockwise, then
clockwise), this suggests a systematic effect of the direction of the response
turn. (The course errors in Figure 7 had the same magnitude as turn errors but
did not show the stairstep effect because they are signed differently.)
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Figure 8. Experiment 2: Response value as a function of correct value for each response
measure (Turn-2, Leg-C), by group (variable-return, variable-outbound). In the variable-return
group, the varying leg is Leg-B, and in the variable-outbound group, it is Leg-C. Best-fitting
linear functions are shown. The upper panels show data from the experiment; the lower panels
show the predictions of the encoding-error model.

Figure 8 (upper left panel) shows Leg-C responses against the correct
value of the varying leg in the path. In the case of the variable-outbound
condition, the varying leg is the correct response leg, and we have the typical
response vs. correct function. But in the variable-return condition, the correct
response distance is constant, and the Leg-C response is accordingly plotted
against the value of Leg B (the varying leg) in the corresponding path.
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The data indicate that variable-return subjects, rather than responding with
a constant Leg-C value, systematically varied their responses in accordance
with the value of Leg B.

ANOVAs were conducted on signed error in Turn-2 and Leg-C, with
factors of group (variable-return vs. variable-outbound) and path (8 values).
The signed Turn-2 error ANOVA produced an interaction between group and
path, F(7,98) = 7.71, p< 0.001. In the ANOVA on signed Leg-C error, the
group X path interaction was marginal, F(7,98) = 2.08, p = 0.05. None of the
group main effects on error was significant, indicating that the magnitude
of error did not differ overall between groups, whereas the pattern of error did.

Evaluating the encoding-error model.We again used the encoding-error
model to fit the data, with the same assumptions as before – linear encoding
functions for leg length and turn, and accurate computation and execution of
the homeward trajectory.2

The initial fit was poor. In contrast to the patterns evident in Figure 6,
the model predicted that the variable-return group’s responses for the various
paths would be distributed around the origin, and the variable-outbound
responses would fall about equally on each side of Leg-A, although they
could fall above or below the origin. To understand why this is so, consider the
predicted data if the subject’s encoding is entirely attributable to mis-scaling
the path (i.e., if Turn-1 angles are encoded perfectly and encoded leg lengths
are a constant proportion of correct values; that is, the encoding function
for leg lengths has a zero intercept). In this case, the shape of the subject’s
distribution of responses will mimic the distribution of dropoff points across
the pathways, but will be off by a scale factor. In the variable-return condi-
tion, the actual dropoff points form a circle around the origin. If subjects
under-encoded the distances, they will think they are in a smaller triangle,
so they will go part way to the origin and stop, with the responses falling
around a circle. If they over-encoded, they will pass through the origin, go
a constant amount, and stop, with the response distribution still forming a
circle. Similarly, in the case of the variable-outbound condition, the dropoff
points form a circle far from the origin. With under-encoding, subjects will
go toward the origin part way, and the responses will come together into a
tighter circle. With over-encoding, they will go past the origin and spread
apart, the response distribution still forming a circle. Although this is the
expectation if encoding errors are entirely errors of scale, simulations indi-
cated that these same patterns in the data would remain robust under a broad
range of encoding functions for turns and leg lengths.

Given the systematic patterns in the data that were summarized above, a
modified model was constructed. This model had 7 parameters and allowed
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Table 4. Experiment 2: Values of parameters fit to the Variable-return and Vari-
able-outbound data by the encoding-error model

Condition Leg-A Leg-B Leg-B Turn Turn Turn Turn

value slope intercept slope, intercept (deg), slope, intercept (deg),

(m) (m) path 1-4 path 1-4 path 5-8 path 5-8

Variable return 2.76 0.86 0.00 0.90 1.6 0.83 11.6

Variable outbound 3.53 0.89 0.00 0.89 8.6 1.33 −20.7

Note: In the variable-outbound condition, Turns 1-4 are clockwise turns and Turns 5-8 are
counterclockwise; the reverse holds for the variable-return condition.

for (a) distinct linear encoding functions for left and right turns and (b)
different encoding for Leg-A (encoded as a constant value) and Leg-B
(encoded by a linear function). Based on the data, we anticipated that the
model-derived encoding functions for left and right turns would be similar
when the model was fit to the variable-return group, but would differ when
the model was fit to the variable-outbound group (reflecting their different
responses for left and right turns). We also anticipated that the estimate of the
encoded value of Leg-A would be predictable from the encoding function for
Leg-B when the model was fit to the variable-outbound group, but not when
it was fit to the variable-return group (reflecting their dependence of distance
responses on Leg-B).

Because the measure of model error used in Experiment 1 yielded an
ambiguous solution for the variable-return data, we used an alternate measure
of model error, based on the turn and distance errors rather than endpoints.3

Table 4 shows the encoding parameters fit to each condition. As was expected,
the functions for right and left turns were quite different in the variable-
outbound condition and more similar in the variable-return condition. Also
as expected, in the variable-outbound condition, the encoded value of Leg-
A that was estimated independently was similar to an estimate based on the
Leg-B encoding function. However, the two estimates were quite different
in the variable-return condition. Specifically, if the 4-m Leg-A was encoded
according to the Leg-B encoding functions shown in the table, the encoded
value would be 3.4 m in the variable-return condition, cf. 2.8 m for the inde-
pendently estimated parameter, and 3.6 m in the variable-outbound condition,
cf. 3.5 m for the independently estimated parameter.

As can be seen in Figure 8, lower panels, the model accounted for the
gross aspects of the data, particularly the difference in left and right turns
in the variable-outbound data and the dependence of Leg-C responses on
Leg-B values in the variable-return data. Correlations between the model-
predicted signed error and the actual signed error, computed across paths,
averaged 0.83 over the two response measures (Leg-C and Turn-2) and two
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groups, and the average slope of the function relating model-predicted signed
error to actual error was 0.81. It is not surprising that the model fits the data
reasonably well, given the number of parameters relative to the number of
observed paths. The principal value of the model here is in indicating that the
nature of encoding varied considerably with the outbound-path values that
the subjects experienced.

Discussion
Subjects in the two conditions in this study traced triangular paths in opposite
directions, culminating in response turns of idential magnitude. Their exper-
iences with the values of the outbound legs and turns were, as a result, quite
different. The question was whether the differences would affect subjects’
performance. In particular, would the difference in variability of return
courses favor the variable-return group, which had more widely varying
courses? Would the data indicate different encoding functions in the two
groups, reflecting the differential variability in the outbound-path values they
experienced?

The manipulation of course variability was directed at the issue of whether
navigators represented the spatial relationships of the paths to one another and
computed the response in terms of the required homeward course, resulting
in interference when return courses were all similar. This is contrary to
the object-centered representation assumed by the encoding-error model.
There was little difference in the variable-outbound vs. return conditions
with respect to return-course error (see Figure 7), despite the considerable
difference in variability of the required course response. This result fails to
support the idea that the return path was being represented by course.

Fit of the standard encoding-error model, which assumes that one common
encoding function is applied to all leg lengths, and another to all turns,
was poor. The model suggested by the data allowed for multiple encoding
functions. The derived parameters indicated that subjects in the variable-
outbound condition, who experienced Turn-1 values that were all quite large,
differentially encoded left and right turns. It also indicated that subjects
in the variable-return condition, for whom Leg-A was constant and Leg-B
was variable, differentially encoded the two legs. Thus, the model indicates
that by virtue of their differing experience with the distribution of path
feature values, subjects adopted distinct ways of encoding the paths. We had
initially hypothesized that greater variability in a parameter of the outbound
path would result in a steeper encoding function, indicating that navigators
differentiated among the parameter values to a greater extent. This hypo-
thesis received little support. In fact, the slope of the leg-length encoding
function was equivalent for the two groups despite differences in variability
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among the outbound legs, and the slope of the turn encoding function was
not consistently greater for the group having greater variability in outbound
turn.

General discussion

The present paper addressed three issues. The first was whether path integra-
tion reflects experience with navigated paths. The second issue concerned a
specific hypothesis about experience, namely, that it affects encoding of path
features. This hypothesis therefore concerns the generality of the encoding-
error model. The third issue is the nature of the path representation that
subjects use. According to the encoding-error model, this representation is
object-centered; it does not relate the paths to one another in terms of a
common reference direction.

Relation of the encoding functions to experience with traveled paths

Initially, we considered two extreme hypotheses about the effects of exper-
ience. (i) Navigators might be unaffected by experience. A priori, we
considered this unlikely. (ii) A more plausible alternative is that they assim-
ilate responses to past experience. In that case, one can ask how much relative
weight is given to the most recently experienced paths; that is, how rapidly
the assimilation progresses. A strong indication of the effect of experience
from past work (Loomis et al. 1993) is a tendency for the mean of subjects’
responses to approach the mean of the correct values in a set of experienced
paths.

Experiment 1 manipulated the region of turn and distance values repre-
sented within a block of paths, in order to determine how rapidly navigators
would adapt. The question was whether navigators’ responses would show
separate matching to the mean within a block. In contrast to this idea, a linear
function fit to the data relating responses to correct values, computed across
regions, accounted for most of the variance (89%–97%), and systematic
departures from linearity were not as predicted by assimilation to the local
mean of a region of paramter values. Thus rapid assimilation of responses to
values experienced within a single blocked set was not indicated.

The phenomenon of matching the mean of responses to the mean of
correct values, and concomitant accurate responding at the mean, was not
evidenced generally across these experiments. Although the condition with
partial vision in Experiment 1 tended to show the most accurate responding
at the mean of correct values, the no-vision condition did not. One might not
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expect matching to the mean in Experiment 1, where stimulus values were
blocked by region, but the phenomenon also failed to emerge in Experiment 2.

The answer to the question raised above, as to whether experience with
recent paths affects path integration, appears from these data to be affirmative.
However, navigators do not adapt so rapidly as to produce block by block
differences under the circumstances of the present Experiment 1, nor do they
necessarily assimilate mean responses to the mean of required responses.

Does experience affect encoding of path features?

To address whether experience affects the nature of encoding, we fit the
linear version of the encoding-error model to the data. The hypothesis of
experience-free encoding indicates that there is an immutable set of gener-
alized encoding functions for all paths; presumably, those would incorporate
the parameters derived by Fujita et al. (1993). However, the presently
extracted parameters differed from previous ones and even between condi-
tions, indicating that encoding is not immutable but rather is experience-
dependent.

Although manipulations of experience affected the derived encoding func-
tions, they did not change encoding processes as predicted. Partial vision in
Experiment 1 was expected to increase subjects’ sensitivity to path features,
yielding a slope in the encoding function closer to 1.0 than the no-vision
slope. This would, in turn, tend to increase the slope of the function relating
responses to correct values for the Vision condition, relative to the No-
Vision condition. Performance did improve with partial vision; however, the
observed empirical effect was on the intercept of the response vs. correct
function. That is, responses moved closer to the diagonal, but there was
no discernable expansion of the response range when partial vision was
provided, which would affect the slope of the function. Not surprisingly,
then, fits of the encoding-error model did not attribute the improvement of
performance with vision to increased slopes of the encoding functions. In
Experiment 2, although experience with different levels of variability in path
features affected performance, and those effects could be predicted by the
model, the predictions that the effects would take the form of changes in the
encoding-function slopes were not generally confirmed.

Object-centered representation vs. relative spatial disposition

The encoding-error model specifies one version of an object-centered repre-
sentation, consisting of encoded values of leg lengths and turns. Its assump-
tions do not make use of a reference frame in which the spatial relationships
among paths are represented. Experiment 2 showed no evidence that the
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paths were anchored with respect to a common reference direction and that
response course was computed, in that greatly decreased variability in return
course failed to increase error. It is not surprising that whole-body navigation
without vision, and without azimuthal cues or tangible landmarks, fails to
make use of a reference system relating the individual paths. Among topics
for future research is the extent to which azimuthal cues, such as distant sound
sources, cause navigators to turn from object-centered representations, and
their apparent fallibility in encoding, to externalized reference frames.

Implications for the model

The present studies expand our understanding of encoding as a basis for error
in path integration. The data indicate that multiple encoding functions can
be formed, reflecting experience, and multiple functions can even be applied
within a single path. In this respect the simplicity of the original model cannot
be maintained, and the generality of any set of empirical encoding functions
is limited. The data nevertheless are consistent with the essential assump-
tion of the model: its attribution of systematic errors in path integration,
given minimal cues outside proprioception itself, to processes that encode
leg-lengths and turns and that result in an object-centered representation.
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Notes

1 In the Fujita et al., 1993, paper, the parameters of the encoding function for stimulus angle
were reported in terms of the inner angle of the triangle (called alpha), not the turn made by
the subject. Here we report the parameters in terms of turn, which results in a change in the
intercept from 50◦ to 44◦.
2 We felt that the assumption of a linear encoding function may be inappropriate for the vari-
able return condition, in which Turn-1 values were all near 180◦. Accordingly, we developed
a sigmoid function for turn encoding, of the form: (2a + 1)∗xˆ(2a + 1) + bx. The function
was scaled so as to pass through the points (0,0) (90,90), and (180, 180), but had a flattened
middle section for a range of parameter values. Increasing thea parameter changes the rate of
rise at the ends, and increasingb increases the slope in the middle section. When b:a> 2, the
function is very nearly linear. Initial runs with this sigmoid on the group data combined, using
the endpoint-distance error function for the model, produced an angle encoding function that
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was linear with slope near 1. Therefore, we continued to use a linear encoding function for the
present modeling.
3 The difference between the empirically obtained signed error and the model-predicted
signed error for a given measure (Turn-2 or Leg-C) was squared, then normalized by the s.d.
of the empirical error (as computed over all paths in the condition) and then the normalized
squared values were summed over all paths and both measures (Turn-2 and Leg-C).
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